Published: 2020-07-04

ETH2存款合约分析

本文分析了以太坊2.0存款合约相关实现。

Table of Contents

1 Deposit Contract

存款合约采用Vyper编写,合约地址: 存款合约

1.1 常量

合约先定义了一些常量,各个参数的长度等。

# Vyper target 0.1.0b13.hotfix1761
MIN_DEPOSIT_AMOUNT: constant(uint256) = 1000000000  # Gwei
DEPOSIT_CONTRACT_TREE_DEPTH: constant(uint256) = 32
MAX_DEPOSIT_COUNT: constant(uint256) = 4294967295 # 2**DEPOSIT_CONTRACT_TREE_DEPTH - 1
PUBKEY_LENGTH: constant(uint256) = 48  # bytes
WITHDRAWAL_CREDENTIALS_LENGTH: constant(uint256) = 32  # bytes
SIGNATURE_LENGTH: constant(uint256) = 96  # bytes
AMOUNT_LENGTH: constant(uint256) = 8  # bytes

1.2 存款事件

然后定义了一个存款事件。这个时间在下面的deposit方法里调用,当收到存款事件时触发。 Eth2的beacon chain通过此事件得知存款的发生,以此来更新验证者相关信息。

DepositEvent: event({
    pubkey: bytes[48],
    withdrawal_credentials: bytes[32],
    amount: bytes[8],
    signature: bytes[96],
    index: bytes[8],
})

1.3 merkle tree structure

合约本身采用merkle tree存储所有的存款事件,在上面的常量设置里,合约最多接受 2^32 -1 个deposit。 最大的merkle tree深度为32。由于在智能合约里直接维护这样的结构比较费时费空间(需要gas)。 于是合约采用了incremental Merkle tree 算法。将计算Merkle Tree Root的时间和空间复杂度由 O(2^h) 减少到 O(h) .

合约里采用两个数组来实现:

branch: bytes32[DEPOSIT_CONTRACT_TREE_DEPTH]
deposit_count: uint256

# Compute hashes in empty sparse Merkle tree
zero_hashes: bytes32[DEPOSIT_CONTRACT_TREE_DEPTH]
@public
def __init__():
    for i in range(DEPOSIT_CONTRACT_TREE_DEPTH - 1):
        self.zero_hashes[i + 1] = sha256(concat(self.zero_hashes[i], self.zero_hashes[i]))

1.4 type convert

接下来定义了类型转化方法将uint256转化成bytes.

@private
@constant
def to_little_endian_64(value: uint256) -> bytes[8]:
    # Reversing bytes using bitwise uint256 manipulations
    # Note: array accesses of bytes[] are not currently supported in Vyper
    # Note: this function is only called when `value < 2**64`
    y: uint256 = 0
    x: uint256 = value
    for _ in range(8):
        y = shift(y, 8)
        y = y + bitwise_and(x, 255)
        x = shift(x, -8)
    return slice(convert(y, bytes32), start=24, len=8)

1.5 公共方法

接下来合约定义了三个公开的方法: get_deposit_root, get_deposit_count, 和 depositget_deposit_root 获取所有deposit的merkle root.

@public
@constant
def get_deposit_root() -> bytes32:
    zero_bytes32: bytes32 = 0x0000000000000000000000000000000000000000000000000000000000000000
    node: bytes32 = zero_bytes32
    size: uint256 = self.deposit_count
    for height in range(DEPOSIT_CONTRACT_TREE_DEPTH):
        if bitwise_and(size, 1) == 1:  # More gas efficient than `size % 2 == 1`
            node = sha256(concat(self.branch[height], node))
        else:
            node = sha256(concat(node, self.zero_hashes[height]))
        size /= 2
    return sha256(concat(node, self.to_little_endian_64(self.deposit_count), slice(zero_bytes32, start=0, len=24)))


get_deposit_count 获取一共有多少deposit.

@public
@constant
def get_deposit_count() -> bytes[8]:
    return self.to_little_endian_64(self.deposit_count)


deposit 是主要的存入方法,定义了当存款事件发生时如何处理。

@payable
@public
def deposit(pubkey: bytes[PUBKEY_LENGTH],
            withdrawal_credentials: bytes[WITHDRAWAL_CREDENTIALS_LENGTH],
            signature: bytes[SIGNATURE_LENGTH],
            deposit_data_root: bytes32):
    # Avoid overflowing the Merkle tree (and prevent edge case in computing `self.branch`)
    assert self.deposit_count < MAX_DEPOSIT_COUNT

    # Check deposit amount
    deposit_amount: uint256 = msg.value / as_wei_value(1, "gwei")
    assert deposit_amount >= MIN_DEPOSIT_AMOUNT

    # Length checks for safety
    assert len(pubkey) == PUBKEY_LENGTH
    assert len(withdrawal_credentials) == WITHDRAWAL_CREDENTIALS_LENGTH
    assert len(signature) == SIGNATURE_LENGTH

    # Emit `DepositEvent` log
    amount: bytes[8] = self.to_little_endian_64(deposit_amount)
    log.DepositEvent(pubkey, withdrawal_credentials, amount, signature, self.to_little_endian_64(self.deposit_count))

    # Compute deposit data root (`DepositData` hash tree root)
    zero_bytes32: bytes32 = 0x0000000000000000000000000000000000000000000000000000000000000000
    pubkey_root: bytes32 = sha256(concat(pubkey, slice(zero_bytes32, start=0, len=64 - PUBKEY_LENGTH)))
    signature_root: bytes32 = sha256(concat(
        sha256(slice(signature, start=0, len=64)),
        sha256(concat(slice(signature, start=64, len=SIGNATURE_LENGTH - 64), zero_bytes32)),
    ))
    node: bytes32 = sha256(concat(
        sha256(concat(pubkey_root, withdrawal_credentials)),
        sha256(concat(amount, slice(zero_bytes32, start=0, len=32 - AMOUNT_LENGTH), signature_root)),
    ))
    # Verify computed and expected deposit data roots match
    assert node == deposit_data_root

    # Add deposit data root to Merkle tree (update a single `branch` node)
    self.deposit_count += 1
    size: uint256 = self.deposit_count
    for height in range(DEPOSIT_CONTRACT_TREE_DEPTH):
        if bitwise_and(size, 1) == 1:  # More gas efficient than `size % 2 == 1`
            self.branch[height] = node
            break
        node = sha256(concat(self.branch[height], node))
        size /= 2

接下来我们来主要看下这里的存储merkle tree的结构和deposit方法的逻辑。

2 Deposit

eth2-deposit-contract-01.png

Deposit方法先校验了数据的有效性,然后更新Merkle Tree结构。

Deposit里是如何验证接收的depositdataroot参数的

这取决于这里的 deposit_data_root 是如何构造的?

根据规范deposit_data_rootDepositData 的一个防止篡改的记号(例如Merkle root或者checksum)。

DepositData 的结构如下:

class DepositData(Container):
    pubkey: BLSPubkey
    withdrawal_credentials: Bytes32
    amount: Gwei
    signature: BLSSignature  # Signing over DepositMessage

整体的计算流程图如下:

eth2-deposit-contract-02.png

图上的hash采用的是sha256,而HashTreeRoot是一种对复杂/简单对象的求merkle root的方式。

2.1 HashTreeRoot

HashTreeRoot提供了将一个对象按一定格式构建默克尔树,然后求得树的默克尔根值的方法。

类似于比特币将一个区块的所有交易ID按序排列构建默克尔树,获得根值记录到区块头部, HashTreeRoot可以将一个对象(bit,bytes, vector,list,containers等等)的各个部分按序排列然后构建默克尔树,获得根值。

可以参见规范上是如何分成几种类型描述HashTreeRoot的算法的。

下图根据规范上的说明,以递归演算的方式,说明如何求得 DepositData 的root.

eth2-deposit-contract-03.png

本质上求的一个对象的HashTreeRoot是将其各个部分按照一定的bytes大小padding,然后一层一层向上merklezie。

而合约上由于接收的对象是固定的,所以直接按照一定的格式一步一步组装计算HashTreeRoot。

代码如下:

# Compute deposit data root (`DepositData` hash tree root)
zero_bytes32: bytes32 = 0x0000000000000000000000000000000000000000000000000000000000000000
pubkey_root: bytes32 = sha256(concat(pubkey, slice(zero_bytes32, start=0, len=64 - PUBKEY_LENGTH)))
signature_root: bytes32 = sha256(concat(
    sha256(slice(signature, start=0, len=64)),
    sha256(concat(slice(signature, start=64, len=SIGNATURE_LENGTH - 64), zero_bytes32)),
))
node: bytes32 = sha256(concat(
    sha256(concat(pubkey_root, withdrawal_credentials)),
    sha256(concat(amount, slice(zero_bytes32, start=0, len=32 - AMOUNT_LENGTH), signature_root)),
))
# Verify computed and expected deposit data roots match
assert node == deposit_data_root

翻译成直观的流程图如下:

eth2-deposit-contract-04.png

3 TODO incremental Merkle tree

4 END

Author: Nisen

Email: imnisen@163.com